233 research outputs found

    Face Detection on Embedded Systems

    Get PDF
    Over recent years automated face detection and recognition (FDR) have gained significant attention from the commercial and research sectors. This paper presents an embedded face detection solution aimed at addressing the real-time image processing requirements within a wide range of applications. As face detection is a computationally intensive task, an embedded solution would give rise to opportunities for discrete economical devices that could be applied and integrated into a vast majority of applications. This work focuses on the use of FPGAs as the embedded prototyping technology where the thread of execution is carried out on an embedded soft-core processor. Custom instructions have been utilized as a means of applying software/hardware partitioning through which the computational bottlenecks are moved to hardware. A speedup by a factor of 110 was achieved from employing custom instructions and software optimizations

    Owl and Lizard: Patterns of Head Pose and Eye Pose in Driver Gaze Classification

    Full text link
    Accurate, robust, inexpensive gaze tracking in the car can help keep a driver safe by facilitating the more effective study of how to improve (1) vehicle interfaces and (2) the design of future Advanced Driver Assistance Systems. In this paper, we estimate head pose and eye pose from monocular video using methods developed extensively in prior work and ask two new interesting questions. First, how much better can we classify driver gaze using head and eye pose versus just using head pose? Second, are there individual-specific gaze strategies that strongly correlate with how much gaze classification improves with the addition of eye pose information? We answer these questions by evaluating data drawn from an on-road study of 40 drivers. The main insight of the paper is conveyed through the analogy of an "owl" and "lizard" which describes the degree to which the eyes and the head move when shifting gaze. When the head moves a lot ("owl"), not much classification improvement is attained by estimating eye pose on top of head pose. On the other hand, when the head stays still and only the eyes move ("lizard"), classification accuracy increases significantly from adding in eye pose. We characterize how that accuracy varies between people, gaze strategies, and gaze regions.Comment: Accepted for Publication in IET Computer Vision. arXiv admin note: text overlap with arXiv:1507.0476

    NBSymple, a double parallel, symplectic N-body code running on Graphic Processing Units

    Full text link
    We present and discuss the characteristics and performances, both in term of computational speed and precision, of a numerical code which numerically integrates the equation of motions of N 'particles' interacting via Newtonian gravitation and move in an external galactic smooth field. The force evaluation on every particle is done by mean of direct summation of the contribution of all the other system's particle, avoiding truncation error. The time integration is done with second-order and sixth-order symplectic schemes. The code, NBSymple, has been parallelized twice, by mean of the Computer Unified Device Architecture to make the all-pair force evaluation as fast as possible on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the O(N) computations are distributed on various CPUs by mean of OpenMP Application Program. The code works both in single precision floating point arithmetics or in double precision. The use of single precision allows the use at best of the GPU performances but, of course, limits the precision of simulation in some critical situations. We find a good compromise in using a software reconstruction of double precision for those variables that are most critical for the overall precision of the code. The code is available on the web site astrowww.phys.uniroma1.it/dolcetta/nbsymple.htmlComment: Paper composed by 29 pages, including 9 figures. Submitted to New Astronomy

    Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos

    Get PDF
    In this paper, a content-aware approach is proposed to design multiple test conditions for shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection and a finite state machine for dissolve detection. In comparison with existing approaches, our algorithm is characterized with two categories of content difference indicators and testing. While the first category indicates the content changes that are directly used for shot cut detection, the second category indicates the contexts under which the content change occurs. As a result, indications of frame differences are tested with context awareness to make the detection of shot cuts adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate that our proposed algorithm achieved comparable performance to those using machine learning approaches, yet using a simpler feature set and straightforward design strategies. This has validated the effectiveness of modelling of content-aware indicators for decision making, which also provides a good alternative to conventional approaches in this topic

    Analysis of 2D airglow imager data with respect to dynamics using machine learning

    Get PDF
    We demonstrate how machine learning can be easily applied to support the analysis of large quantities of excited hydroxyl (OH*) airglow imager data. We use a TCN (temporal convolutional network) classification algorithm to automatically pre-sort images into the three categories “dynamic” (images where small-scale motions like turbulence are likely to be found), “calm” (clear-sky images with weak airglow variations) and “cloudy” (cloudy images where no airglow analyses can be performed). The proposed approach is demonstrated using image data of FAIM 3 (Fast Airglow IMager), acquired at Oberpfaffenhofen, Germany, between 11 June 2019 and 25 February 2020, achieving a mean average precision of 0.82 in image classification. The attached video sequence demonstrates the classification abilities of the learned TCN. Within the dynamic category, we find a subset of 13 episodes of image series showing turbulence. As FAIM 3 exhibits a high spatial (23 m per pixel) and temporal (2.8 s per image) resolution, turbulence parameters can be derived to estimate the energy diffusion rate. Similarly to the results the authors found for another FAIM station (Sedlak et al., 2021), the values of the energy dissipation rate range from 0.03 to 3.18 W kg−1.</p

    Detecting inertial effects with airborne matter-wave interferometry

    Get PDF
    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / \surdHz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.Comment: 7 pages, 6 figures. The final version of this article is available in OPEN access (free) from the editor website at http://www.nature.com/ncomms/journal/v2/n9/full/ncomms1479.htm

    Using vital statistics to estimate the population-level impact of osteoporotic fractures on mortality based on death certificates, with an application to France (2000-2004)

    Get PDF
    Abstract Background We developed a methodology using vital statistics to estimate the impact of osteoporotic fractures on the mortality of an entire population, and applied it to France for the period 2000-2004. Methods Current definitions of osteoporotic fractures were reviewed and their components identified. We used the International Classification of Diseases with national vital statistics data for the French adult population and performed cross-classifications between various components: age, sex, I-code (site) and E-code (mechanism of fracture). This methodology allowed identification of appropriate thresholds and categorization for each pertinent component. Results 2,625,743 death certificates were analyzed, 2.2% of which carried a mention of fracture. Hip fractures represented 55% of all deaths from fracture. Both sexes showed a similar pattern of mortality rates for all fracture sites, the rate increased with age from the age of 70 years. The E-high-energy code (present in 12% of death certificates with fractures) was found to be useful to rule-out non-osteoporotic fractures, and to correct the overestimation of mortality rates. Using this methodology, the crude number of deaths associated with fractures was estimated to be 57,753 and the number associated with osteoporotic fractures 46,849 (1.85% and 1.78% of all deaths, respectively). Conclusion Osteoporotic fractures have a significant impact on overall population mortality.</p
    corecore